练习R:rcompanion包实现Mann–Whitney非参数检验效应量计算

原创 数据小兵  2021-12-03 11:15  阅读 1,504 次
数据小兵成长记

t检验时,可以计算cohen’s d效应量值。而当数据不满足正态分布,进行非参数检验时,可以用什么效应量呢?

以Mann–Whitney U Test为例,大家可以自行前往R包rcompanion的网站去学习相关知识点。

网址

http://rcompanion.org/handbook/F_04.html

至少提到了5种适合的效应量:

1.Freeman’s theta

2.epsilon-squared

3.r

4.tau-b

5.Cliff’s delta

小、中、大效应的参考标准:

咱们以雇员数据为例,用wilcox.test()函数尝试分析一下是否少数族裔他们的salary有无差别。

wilcox.test(salary~minority,data = employee)

不同族裔的salary差异有统计学意义(W=24038,P<0.001)。

接下来使用rcompanion包实现非参数效应量计算。

freemanTheta(x=employee$salary,g=employee$minority)

Freeman.theta = 0.249 小效应

再来一个效应量值,

cliffDelta(salary~minority,data = employee,ci=T)

0.249,和freemanTheta结果一致,仍然是小效应。

本文完

文/图=数据小兵

更多R统计文章

练习R:单个连续数据的探索性统计可视化函数EDA
练习R:用lm.ridge()做岭回归分析,可惜无法输出R平方
练习R:lm+plot+abline+text四函数绘制线性拟合散点图

练习R:用lm.ridge()做岭回归分析,可惜无法输出R平方

练习R:分类自变量的线性回归

练习R:factor函数为有序分类变量创建值标签

学习R:识别缺失值与将指定数据编码为缺失值
练习R:car包recode函数多分类变量的重新编码
练习R:stepAIC多元逐步回归
练习R:用3d空间图展示多元线性回归模型
练习R:用3d空间图展示多元线性回归模型
练习R:dplyr包arrange函数排序
练习R:DoE.base包生成标准L9-3-4正交表

练习R:正交试验极差分析、方差分析与统计图形

练习R:rsm包设计响应面试验并做数据分析

练习R:interaction.plot()函数绘制交互作用图

练习R:influencePlot()函数发现离群点杠杆点强影响点

练习R:glm()函数连续自变量的二项logistic回归

练习R:spss.get()函数读取SPSS数据集

练习R:lrtest()函数做logistic回归全局显著性检验

练习R:qqnorm+t.test函数配对t检验

练习R:TukeyHSD()+plot()函数实现多重比较森林图

练习R:pwr.t.test()函数实现独立t检验样本量计算

练习R:qcc.overdispersion.test()函数检验等离散性

练习R语言:fa.parallel()与fa()函数实现因子分析

练习R语言:mk.test()函数Mann-kendall趋势检验

练习R语言:t.test()函数单侧t检验案例

本文地址:http://www.datasoldier.net/archives/3425
版权声明:本文为原创文章,版权归 数据小兵 所有,欢迎分享本文,转载请保留出处!
视频课程《SPSS统计分析:从入门到实践提高》
欢迎订阅SPSS训练营微信公众号

评论已关闭!