人工智能与统计学的关系,阿里AI负责人金榕和诺奖得主萨金特的观点对碰

原创 量子位  2018-09-05 17:45  阅读 128 次
视频课程《SPSS统计分析:从入门到案例实践》

AI首先是华丽辞藻,其实就是统计学。”这是2011年诺贝尔经济学奖获得者托马斯·萨金特(Thomas J. Sargent)近期在中国公开演讲时对AI的结论。

阿里AI负责人、阿里巴巴达摩院机器智能技术实验室主任金榕,决定逐条批驳萨金特的观点。也借机正本清源,表达了对于AI发展现状和未来的看法。

本文由小兵摘选自【量子位】微信公号,原文地址见本文末。


萨金特说,“人工智能其实就是统计学,只不过用了一个很华丽的辞藻,其实就是统计学。好多的公式都非常老,但是所有的人工智能利用的都是统计学来解决问题。”

咱们来听听金榕的观点,如下:

这位宏观经济学家也许是习惯了用统计去寻找经济的因果关系,因而认为AI也是这样。即使是他提到的动态规划(dynamic programming),也不属于统计学范畴。

除了统计,AI中的“学习”“推理”和“决策”中还使用了代数、逻辑、最优化等许多其他学科知识与方法。此外,有了算法后如何有效实现也非常重要。所以单纯说AI就是统计学,或者说“所有的AI都是利用统计学来解决问题的”都是片面和不准确的。

在这里我们首先需要定义什么是人工智能背后的核心技术。现在人工智能技术的成功背后,是基于对海量数据的学习,因此大量的大数据处理、优化以及分布式计算基础设施都扮演了非常重要的角色。

此外,AI还涉及到一个关键因素,就是如何实现最优的智能决策(例如AI打游戏)。一些理论和实证研究已经发现,神经网络就非常善于在复杂的条件下做出最优的决策。神经网络也不是统计学范畴。

还有,人工智能在计算机视觉、语音识别等领域取得的突破,还得益于硬件的日趋成熟。类似智能音箱天猫精灵、Echo的成功不仅来自于成熟的语音识别算法,也源于麦克风阵列等硬件设备变得越来越可靠。

那如何比较准确的表述统计学和AI的关系呢?应该说,统计学是人工智能若干重要基础之一,但远不是全部。

就像我上文提到的除了统计学,AI的核心能力还来自于数学(博弈论、数值分析、逻辑学等)、运筹学(优化)、计算机科技(分布式计算、并行计算、CPU、NPU)、神经科学,甚至心理学。

原文地址:https://mp.weixin.qq.com/s/7o0K2eF_nnRVbo44UQ4tSQ

本文地址:http://www.datasoldier.net/archives/537
版权声明:本文为原创文章,版权归 量子位 所有,欢迎分享本文,转载请保留出处!
欢迎订阅SPSS训练营微信公众号
SPSS上机训练作业

评论已关闭!