SPSS统计分析学习笔记7:多层感知器神经网络

原创 数据小兵  2018-09-18 14:34  阅读 422 次
视频课程《SPSS统计分析:从入门到案例实践》

神经网络模型起源于对人类大脑思维模式的研究,它是一个非线性的数据建模工具, 由输入层和输出层、 一个或者多个隐藏层构成神经元,神经元之间的连接赋予相关的权重, 训练学习算法在迭代过程中不断调整这些权重,从而使得预测误差最小化并给出预测精度。

SPSS神经网络中,包括多层感知器(MLP)和径向基函数(RBF)两种方法。

本期主要学习多层感知器神经网络,要把它讲清楚是比较困难的,为了能直观感受它的功能,首先以一个案例开始,最后再总结知识。

案例数据

该数据文件涉及某银行在降低贷款拖欠率方面的举措。该文件包含 700 位过去曾获得贷款的客户财务和人口统计信息。请使用这 700 名客户的随机样本创建多层感知器神经网络模型。银行需要此模型对新的客户数据按高或低信用风险对他们进行分类。

多层感知器神经网络 总结

一种前馈式有监督的学习技术;

多层感知器可以发现极为复杂的关系;

如果因变量是分类型,神经网络会根据输入数据,将记录划分为最适合的类别;

如果因变量是连续型,神将网络预测的连续值是输入数据的某个连续函数;

建议创建训练-检验-支持三个分区,网络训练学习将更有效;

可将模型导出成 XML 格式对新的数据进行打分;

以上文章,由数据小兵原创,首发于【SPSS统计训练营】微信公号。

本文地址:http://www.datasoldier.net/archives/570
版权声明:本文为原创文章,版权归 数据小兵 所有,欢迎分享本文,转载请保留出处!
欢迎订阅SPSS训练营微信公众号
SPSS上机训练作业

评论已关闭!