Leave P Out 交叉验证
Leave P Out 交叉验证是一种详尽的交叉验证技术,其中 p 样本用作验证集,剩余的 np 样本用作训练集。
假设我们在数据集中有 100 个样本。如果我们使用 p=10,那么在每次迭代中,10 个值将用作验证集,其余 90 个样本将用作训练集。
重复这个过程,直到整个数据集在 p-样本和 n-p 训练样本的验证集上被划分。
优点
所有数据样本都用作训练和验证样本。
缺点
计算时间长:由于上述技术会不断重复,直到所有样本都用作验证集,因此计算时间会更长。
不适合不平衡数据集:与 K 折交叉验证相同,如果在训练集中我们只有 1 个类的样本,那么我们的模型将无法推广到验证集。
留一交叉验证
留一交叉验证是一种详尽的交叉验证技术,其中 1 个样本点用作验证集,其余 n-1 个样本用作训练集。
假设我们在数据集中有 100 个样本。然后在每次迭代中,1 个值将用作验证集,其余 99 个样本作为训练集。因此,重复该过程,直到数据集的每个样本都用作验证点。
它与使用 p=1 的 LeavePOut 交叉验证相同。